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. IMPERFECTION-SENSITIVITY OF EXTERNALLY PRESSURIZED SPHERICAL SEELLS

John W. Hutchinson
Harvard University, Cambridge, Massachusetts

INTRODUZTION

In this paper the initial post-buckling behavior of a sphericai shell
subject to externai pressure loading is determined on the basis of Koiter's
general tﬁeory of post-buvckling behavior.(l) As might well be expected, the
most important features of this problem show a striking similarity to aspects
present in the behavior of cylindrical shells under axial compressionm.
Iﬁperfections in the shell geometry are found to have the same severe effect
on spherical shells as has been demonstrated for axially compressed

é cylinders.(l)’(z)
"""" Perhaps the mair feature which distinguishes this investigation from

previous work is that hereiconsidetation has not been restricted to rotationally-
symmetric buckling deformations. In fact, it is clearly demonstrated that the
initial post-buckling behavior is decidedly not rotationally-symmetric but is
analogous to the cylindrical shell behavior in which a number of modes combine
to give rise to the highly imperfection-sensitive character of the structure.
Thompson(3) has also employed the Koiter theory to study the initial post-
buckling behavior of the complete sphere. His approach, however, is
fundamentally different than that taken here because of the restriction to
rotationally-symmetric deformations. This work will be discussed further in
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the body of the present paper. Other investigators(k)’(s)’(6) have determined
the large-deflection behavior with the aid of various methods but in each case
under the above mentioned assumption of rotational symmetry. The large-
deflection, rotationally-symmetric equilibrium configurations appear to be in
reasonable agreement with experimental observations in the same large-deflection
range.

To obtain a clear understanding of the effects of imperfections on the
buckling strength of this structure it is necessary to study its initial post-
buckling behavior. It is this study which forms the substance of the present

paper.

SHALLOW SHELL EQUATIONS

Nonlinear shallow shell equations will be employed in this analysis.y The
consistency of applying this representation to the complete sphere willﬂae
discussed as the analysis proceeds. In anticipation, however, we remark that
the adequacy of this description follows from the fact that the characteristic
buckle wave lengths are small compared to the shell radius. Thus, it is possible
to choose a shallow section of the shell surface in which the buckle pattern is
duplicated many times.T For essentially the same reason, the initial post-
buckling behavior of an axially compressed cylinder can also be obtained within
the context of shallow shell theory (which for cylinders is identical to non-
linear Donnell theory).

A shallow section So of the sphere is imagined to be isolated as shown

Here shallow is taken in the sense that the slopes of the surface

measured from the section base are small and, thus, the shallow shell

approximations are valid.
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in Figure 1. Cartesian coordinates x and y are chosen in the base plzame
of the shallow section and 2z is normal to this plane. The stress-strain
relations and the bending strain-displacement relations of shallow shell theory
are linear while the membrane strain-displacement relations are nonlinear.
Listed here are these nonlinear relations, which along with the other shallow
shell equations, are given, for example, by Sanders.(7) The membrane strains
€, » EY and exy are given in terms of the tangential displacements U and
V and the normal displacement W by

- 1.2
€, U,x + W/R + 5 w’x
e =V +WR+1y2 Q)
y »Y 2,y
1 1
€ = (U +V + W W
xy 2( 4 :X) 2 ,x,y

where R 1is the radius of curvature of the spherical section.
The three equilibrium equations of nonlinear shallow shell theory can be
replaced by one equilibrium equation and one compatibility equation written in

terms of W and a stress function F . These two equations are

1
DV'W + = VF-F W -F W 4+2F W = - 2

R KK LYY | SYY SEK Xy ,xy © P )

1 4 1 .2 2

-V F - = V20 4+ VW W -W =0 3

Eh R »XX VY Xy (3

where D = Eh3/12(1-v?) , E and v are Young's Modulus and Poisson's Ratio,
h 1is the shell thickness, V* and V2 are the two-dimensional biharmonic and
Laplacian operators, and p 1is the external pressure. The resultant membrane
stresses are given in terms of the stress function by

N =F N =F and N = ~F
x vy 1y »XX xy XY
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CLASSICAL BUCKLING ANALYSIS

Prior to buckling the perfect spherical shell is in a uniform membrane

state of stress (Ng = Ng = - %-pR) with an associated inward radial

displacement W0 = -(l—v)pRzlEh!. With

F=- %’(xz-*-yz)pR + f
and |

W = ~(1-v)pR?/Eh2+ w
f and w are zero prior to buckling. The critical pressure P, > often
called the classical buckling pressure, at which bifurcation from the pre~
buckling state of stress occurs is predicted by the linear buckling analyeis.
The linear buckling equations are obtained by substituting for ¥ and W into

Equations (2) and (3) and then linearizing with respect to f and w . One

finds
4 1l .o 1
DV + 3 V2 + 3 RVZ2w = 0 (4)
and
1 oue _ 1 =
o Vif szw 0 (5)

Periodic solutions to these homogeneous eigenvalue equations are sought

in the form of products of sinusoidal functions such as

W= cos(kx -;E)cos(ky %]

(6)
= X Y
£f=3 cos(kx R)cos[kY R)
The eigenvalue associated with this choice is
- 2Eh. . 2., 2y-1 b1 2,12
P = R LGEHD™ + qT )] )

with B = -EhR(k§+k§)-1 and where

2
¢4 = 120-v?)(})




The classical buckling pressure is found by minimizing p as given by

Equation (7) with respect to kx and ky » This critical pressure is

2
p, = 4Eh/Rq2 = —2E _ ® (8)

J3(1-v2)

and is associated with any combination of wave numbers kx and ky satisfying
2 2 w a2
kx + ky ag ¢))

This critical pressure, obtained on the basis of shallow shell theory, is
exactly that predicted by equations for a full sphere (see, for example,
Flﬁgge(s)).

The shallow shell representation of the portion So of the complete
sphere can only be valid if the wave lengths of the buckle pattern are small
compared to the radius of the shell, or what is the same, if the wave numbers
kx and ky are both large compared to unity. Associated with the critical
buckling pressure is a multiplicity of buckling modes and, as seen from
Equation (9), combinations of kx and ky are possible such that both are of
order q, and, therefore, sufficiently large. An exception to the requirement
of large wave numbers occurs if either kx or ky is identically zero, that
is, if the buckling deformation is independent of either x or y . In such
cases, as well, the shallow shell description is accurate for shallow sections
of a complete sphere. This is analogous to the situation for axial buckling
of cylinders for which the shallow shell equations are accurate for the axi-
symmetric mode but not, for example, for the Euler column mode in which only
one wave length, in effect, spans the shell circumference.

The initial post-buckling behavior of the spherical shell is investigated

in the remainder of this paper. It will be seen that sets of either two or

three of the buckling modes associated with the classical buckling pressure
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couple to give rise to a load-deflection behavior which falls sharply in the

initial post-buckling regime. As previously indicated, the analysis will be
carried out within the framework of Koiter's gemeral theory of post~buckling

behavior. This theory is outlined in the next section.

KOITER THEORY FOR MULTI-MODE BUCKLING

The procedure which is sketched below is an application of the variational
principle of potential energy to obtain equations characterizing equilibrium
in the prebuckling and initial post-buckling regimes of a structure with a
nultiplicity of buckling modes associated with the critical buckling load.
These equations are in the form of simultaneous nonlinear, algebraic equations
relating the magnitude of the externally applied load to the deflections in the
various buckling modes. The magnitudes of assumed geometrical imperfectionms
also appear. The notation and development of Koiter's general theory displayed
here is taken for the most part from Reference 9. The reader is referred to

@)

this reference or Koiter's own work for certain arguments and points of
rigor which there is no need to re-establish here.

Generalized stress, strain and displacement fieids are denoted by o ,
€ and u , respectively. The magnitude of the applied load system is taken
to be directly proportional to the load parameter A .

The potential energy expression for the structure is conveniently written

in the compact form
PE = £ {0,e} - ABj (u) (10)

where, of course, the stresses and strains are calculated from the kinematically
admissible displacement field u . Here, in general, {o',c"} denotes the

11

internal virtual work of the stress field o' through the strain field ¢" ;
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and ABj(u) 1is the work of the applied force field of intemsity A through
a displacement u of the structure.

We consider only structures which can be adequately described by nonlinear

strain~displacement relations of the form
1
e =L;(u) + 3 Lo (u) (11)

where Lj and L; are homogeneous functionals which are linear and quadratic,
respectively, in u . Furthermore, the stress-strain relations are assumed to
be linear and are written symbolically as

o = Hj(e) (12)

where H; is a linear, homogeneous functional of the strain components. The
set of nonlinear shallow shell equations are of this form. With this notation,
for example, L, 1is zero in calculating the bending strain while L, 1is
2
W,x in calculating €x °
An initial deviation u of the unloaded structure from the perfect form

is called the initial imperfection. In the presence of an initial imperfection

the strain arising from an additional displacement u 1is
1 -
e = Li(u) + E'LZ(“) + Lj;(u,u) (13)

where Lll(u,ﬁ) = Lll(ﬁ,u) is the bilinear, homogeneous functional of u and

u which appears in the identity

Ly(utu) = Ly(u) + 2L;;(u,u) + Ly(u)
(As an illustration, if the initial deviation of the shell middle surface from
a spherical shape is denoted by W then by shallow shell theory €y is, using
(1) and (13), U,x + w/R + %-wfx + w,xﬁ,x where y 1is the additional radial

displacement.)

It is assumed that there are several linearly independent buckling modes



uéi), ué‘), ++., associated with the critical value of the load parameter

Ac . The complete displacement of the structure is written quite generally as

= (n) N
u Auo + g Enuc + d (14)

vhere Auo is the prebuckling displacement of the perfect structure subject

to the external load intensity corresponding to A . For the spherical shell
under uniform pressure this is just a uniform radial displacement. Each of the
modes uéi) are taken orthogonal to one another and each is orthogonal to ¥ .
The orthogonality condition is

{Oo,Lll(uéi),u‘(:j))} = 0 i43

nay
where o, = Hl[Ll(uo)] . Imperfections in the form of the buckling modes/result

in significant reductions of the buckling load; thus, we take

a=]2.® (5)

nec
n

Now, the potential energy is evaluated using the expression for u and u

with Equations (12)-(14) and the orthogonality conditions. The result is
= 1. 2 (i)
PE = const. + (A=A )]&2{o _,La(u "")}
1 1) (i) F (1)
+5 Qgs 7 LaQegu DY + JEE Mo La(u )

+ terms of order &% , EE2 , ... (16)
(1)

c

vhere s = Hl[Ll(uéi))] . Only terms up to and including third powers of
the £'s and imperfection terms like EE in the potential energy are displayed.
This expression for a 'quadratic structure’ is in the form given by Koiter

[(1), Eq. (28)]. It is noted that U does not appear in potential energy

since it contributes to quartic but not cubic terms in the E's. The potential
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energy expression in the truncated form given here can provide an accurate
description of the structure only so long as the £'s and imperfections E's
are sufficiently small to insure that the terms neglected are small compared
to those retained,

Equilibrium equations relating the gi's to the load parameter ) are

obtained from the requirement that the first variations of the potential energy

with respect to the §i's vanish., These equations are

g, + 1(3E s Ly (g o™ ,u®)))

R ORE RS VS W AR A
c o0 C
=i ¢ 1i=1,2 a7
A i ] geve
tirally, we give the generalized load-deflection relation for a perfect,

multi-mode structure, obtained from Equation (10) with the aid of the

auxiliary equations, namely

By (u) Lalge A fo L2 (e 5
Bi(u,)) A, 2. ™ Ai{oo,Ll(uo)}

where u__ = A v, is the prebuckling displacement at the buckling load and from
o
Equation (10), Bj(u) represents the generalized displacement through which the

external loading system acts.
FUST-BUUKLING U¥ SPHERICAL SHELL: TWO OPERATIVE MODES

In forming the nonlinear equations of equilibrium for the spherical shell
it 1s necessary to take into account 31l the buckling modes associated with the
critical buckling pressure, that is, all modes whose wave numbers satisfy

k2 + k2 = g2
x Y& = q] 9

It will be shown that the nonlinear equations for the £'s decouple into

separate sets of equations corresponding to interaction between either two or
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three of these critical modes. Two modes will interact when one of the
operative modes has a zero wave number associated with either the x or y
coordinate. This case is considered first and the three mode situation is
discussed in the next section.

Translating from the general notation to the shallow shell notation, we
take as uél)

wﬁl) = h cos(q %) 19)

with the associated stress function

(1) o _wRrh24-2 X
fc ERh q cos(qo R)

Of all the modes satisfying (9), only a mode with k = q°/2 , and thus

ky = /3 qo/2 , will interact with wél) , as will be shown. For uéz) take

wéz) h sin[2 q, R)sin(z q, R) (20)

¥

féz) = ~ERh%q ‘2 sin(; 9 R sin(gg 9,

The coefficients of the various terms in the equilibrium equations (17) are

easily calculated. Some of the details are shown below., First

)y _1 (1)y2
A do  La(u )} > pcR£ (wc’x) ds
o]
3
= - 2Eh° f (sin q, %)st
R2 s,
3
- . ERZ ¢
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where So is the area of the shallow section. Consistent with the fact that
the buckle wave length is short compared to the characteristic length of the

2, X _1lc,_ X ;
section So only the constant part of sin 9, R 2(1 cos 2qo R) is evaluated

in arriving at the above expression, Similarly

2)y} « _ En
A {012 (uf2))} S

2r2 ©°

and

{8, LN} = | féi;x(wéf;)zds

5
o

- 3CEn}
16 R2 O

where C = J3(1-v2) . This last coefficient,which gives rise to coupling
between wél) and wéz) » would vanish if the k_ associated with wéz)

were not %—qo . The other non-zero coupling coefficient is

(oD, D o)) = [ 162 400 - £ e

s b ]
- _ 3cEnd
16R2 o
while
{séx),Lll(uél),ugz))} = {sél),Lz(uél))} = {sgz),Lz(uéz))}
= ({8, LN} = 0
Lastly,

2 3
Eh S

2 .- - | 2
Ac{co’LI(uo) 3 (1+v) g2 ©

With these coefficients the two equilibrium equations for £; and €2
in terms of the external pressure p become

(- 2g - Ze2 =2 (21)
c c
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-2 - Fan =25 (22)
[+4 c

and it is important to note that the deflections in the modes, §; and §&; ,
as well as the imperfection magnitudes, 21 and Ez , are measured relative
to the shell thickness. This follows from the choice of wél) and wéz)

in Equations (19) and (20).7

For the perfect shell (E1=EZ=O) Equations (21) and (22) admit only the

trivial solution when the prebuckling pressure is less than the critical value

P. . When p attains P, bifurcation from the membrane state of stress occurs,

c

and the equilibrium equations are easily solved for &; and &5 :

- 3 ¢y B
3] gc(l pc)

16
= t 2201~ B
E2 9C( pc)

This behavior, sketched in Figure 2, is characteristic of a '"quadratic type"

structure and has been discussed by Kniter(l)

in some detail for the general
case. The equilibrium pressure in the post-buckling regime is greatly
reduced even where the buckling deflections are only a small fraction of the
shell thickness, i.e., £; and &, a small fraction of unity.

The generalized load-deflection relation valid in the initial post-buckling
region is easily calculated using Equation (18). The generalized displacement
By(u) 1in this case corresponds to the average normal displacement, w , of

ave
the shallow section. One finds

w
_..a..!e.gﬂ_.’._;l_‘g’___. a- 22 (23)
wo pc 27(1’V) pc
[
where W0 = BtIZM) h 1is the prebuckling normal displacement at the

Note that Equations (21) and (22) as well as the predictions to be

obtained from them do not depend on the area of the shallow section so .




o bifurcation pressure.

An imperfect shell suffers deflections in the buckling modes with the

first application of external pressure. The behavior for the case Ez =0 ,
E1 > 0 1is also depicted in Figure 2. Prior to buckling the load increases

with deflection in the £; mode with

& p/p,
1-plp,

Ey = 26)

until the coefficient of £, 1in Equation (22) vanishes. At this point
bifurcation occurs. Following bifurcation the equilibrium pressure falls with
deflections occurring in both modes; and thus, the maximum (buckling) pressure,
denoted by p* s 18 the bifurcation pressure which satisfies
a-2y’ % 2 @5)
Pe 8 Pe

Small imperfections (relative to the shell thickness) result in large
reductions of the buckling pressure as shown in the plot of (25) in Figure 3.

If £, =0 but &p # 0 , the maximm value of p is obtained by
substituting for &; in terms of &, from Equation (21) into Equation (22)

and determining then the value of p such that %%2- =0 . One finds

2 21/3¢ 1z y 2

- 2 g &IYIL]TF

- g% =55 [£2) (26)
This formula 1s also plotted in Figure 3 and it i{s seen that an imperfection

in the form of the £; mode causes a.greater reduction than an equal imperfection

in the &; mode.

THREE OPERATIVE BUCKLING MODES

Interaction between two modes occurs only if one mode has a zero wave

T If we had chosen w(Z) = h cos(q xIZR)sin(/~§ y/2R) instead of (20),
Equation (25) would be (1-p /p )2 = —9C£1p /8p and thus valid for §&; < O.
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, number; otherwise, the modes will interact in sets of three. To illustrate

such a situation we take as uél) . uéz) and u§3)

‘wgl)" [ n ] X v

= cos{ayq_ )cos(Bi1q &)

(l) _ 2 ~2 o R o R
_fc 5 ERh %o J
)7 [ = ]

c - X, b4

@ |_grn2q-2 sin(azq, R)sin(B2q, ) @n

c | | i
[w(3)] T h A

c - .S >4

=nd £()]|  |-ERn2q-2 sin{asg, psin(Bag, )
c L o

where by, Equation (9), ai + Bi =1 (i=1,2,3) .
The coefficients in the algebraic equilibrium equations are evaluated in
much the same manner as in the last section. Coupling between the three modes

will occur only if coefficients such as {sél),Lll(uéz),ué3))} do not vanish.

Evaluating this term we find

{Sél)sLll(“§2)s“§3))} = £ [f(l) w(f)w(fz): + fél});xwéfgwéfg
]

- f<§;y(w§2;w§§;w§§)w(3>)1ds

C Eh3

= - 5‘;;’ So(-Bfa2a3+a§8283-a1810382+a1810283)
if ayto3 = a; and B;+B, = B3 but is zero otherwise.’ These two equations
along with the conditioms a%+8§ = 1 uniquely determine the magnitudes of any

five of the a's and pB's in terms of the remaining one. From this follows the

Actually there are other combinations for which this coefficient will not
vanish, for example ay+a3 = -a; and B§;+8, = -B3 , but these are, in

effect, included within the combination listed above.
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, sStatement made eariier that the equilibrium equations decouple into sets made

up of three interacting modes unless, of course, one mode wave number is zero.
Then the three mode case degenerates to the case discussed in the last section.

The remaining nonlinear, coupling coefficients are non-vanishing only

under the same conditions and are easily found to be

3
{séz),Lll(ugl),uéa))} = - %'Eg—'SO(Bgalag+a§8183+u282u183+02828103)

R
and
{553),L11(ué1),u£2))} = - %z‘—:- So(Bgalaz-a:;BlSz-l-a;;Bgul82-u38381u2)
with all others zero. Finally,
Ac{co,Lz(uéi))} = - %.Ehi So i=1,2,3

RZ
The coefficient of the nonlinear term in each of the three equilibrium

equations is {s£1),Lll(u§2),u§3))} + {Béz),Lll(uél),ugs))} + {523),L11(u§1),u£2))L

3
This coefficient reduces to a constant value, - %g-gg— So » independent of
R

which three mode set 18 under consideration. Thus, the three equilibrium

equations for a given decoupled set are

P, _9C Pk 3
a pc)€1 16 £2€3 °, &1 (28)
Py, _ 9 <P_3
1 Pc)zz 16 G163 % Ep (29)
Q- e, - £ E1€p = E"Es (30)
Pe 16 Pe

If a three mode set is operative in the initial post-bukcling deformation

of the perfect sphere, then

£y = E2 = E3 = %g(l- §‘9
c
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and the generalized load-deflection relation, again using Equation (18), is

w
_ave _p_ . _3  p.2

o Ty ) (1)
[

One notes that the load-deflection relation for the three mode case differs from
that for the two mode situation. The initial post-buckling load-deflection
curves for both cases are plotted in Figure 4.

If the shell is imperfect with an imperfection in only one of the modes,

E3 > 0 say, the prebuckling deformation is in the £3 mode

€3 p/o,
E3 = 1- p/
P/P,
Bifurcation from this solution will occur at the value of p when the
determinant of the coefficients of £; and £; in Equations (28) and (29)
vanishes. This gives the buckling pressure of the imperfect shell which is

found to be

%* *
_Py2_9%€C s 2 32
-7 =16 &3 5 (32)

This relation is plotted, along with the results for two mode situation, in
Figure 3. A single imperfection in the three mode case is not as degrading

as a single imperfection when two modes are operative.

DISCUSSION OF THE RESULTS

The equilibrium equations of the general theory decouple into sets of
elther two or three interacting modes. The set, or combination of sets, which

is actually operative in the initial post-buckling regime of the perfect sphere

is indeterminate within the context of the general theory. This indeterminacy
parallels the initial post-buckling situation for axially compressed

cylindrical shells which Koiter studied via his general theory. Like the
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spherical shell, the cylindrical shell has a multiplicity of buckling modes
associated with the classical buckling load; but unlike the sphere, all the
modes can couple through the nonlinear terms in the equilibrium equations. The
relative magnitudes of these modes, however, remain undetermined by the general
theory. On the other hand, the load-end shortening relation is uniquely
determined by the general theory. The generalized load~deflection relation
(1.e., p vs. wave) for the sphere is not uniquely determined by the general
theory but depends on whether a two or three mode set is operative. Quite
likely the indeterminacy in both problems would be removed if higher order
terms were retained in the potential energy expression. |

An imperfection in the form of any given mode has the effect of
determining which set of modes will be operative. The imperfection which
appears to cause the greatest reduction in the maximum support pressure is
that in the form of the &; mode of the two mode case (see Equation (26)).
For axially compressed cylindrical shells, imperfections in the form of the
axisymmetric buckling mode are most ctitical.(z) The relation of buckling

load to imperfection for cylinders with this imperfection is

A* 2 3¢t
-3 =378 3

c c
where X*/Xc is the ratio of the buckling load to the classical buckling load.
Here, the imperfection magnitude is measured relative to the shell thickness
in the same manner as in the analogous formulae in this paper. The effect of
the most critical imperfection on each structure is almost identical (compare
this equation with Equation (26)).

With the restriction that the deformations be rotationally-~symmetric,

(3)

Thompson has shown, on the basis of Roiter's general theory that the slope
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of the pressure-deflection curve is negative in the initial post-buckling
regime. The value of this slope, however, is extremely small implying that
although the sphere will be imperfection-sensitive it will not necessarily be
significantly so. In fact, the rotationally-symmetric analysis indicates that
for comparable reductions in the buckling pressure the imperfection magnitudes
must be (relative to the shell thickness) on the order of YR/h times the
values predicted by the present analysis. The rotational-symmetry restriction
precludes the possibility of the strong coupling between critical modes which

has been demonstrated here.

LIMITATIONS OF THE GENERAL THEQRY

As previously emphasized, one can have confidence in the general theory
only when the terms dropped from the potential energy expression are
sufficiently small compared to the terms retained. In particular, the larger
the imperfections the more one should question the buckling load predictions.

When the imperfection is in the form of a buckling mode with one zero wave
number it is possible to obtain an independent estimate of the buckling

pressure of the spherical shell. If we take an imperfection in the form of

;=§hcosqo-§-

the nonlinear shallow shell equations for an initially imperfect spherical
shell admit an exact solution for the prebuckling deformation of the shell, and
the deformation is independent of the y coordinate. At a certain value of

the external pressure bifurcation from this y-independent deformation occurs.
The approximate calculation for determining the relation of the bifurcation
pressure to the imperfection is sketched briefly in the Appendix. The analogous

calculation for the effect of axisymmetric imperfections on the buckling load
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@ m
e

of c}lindrical shelig has been given a careful treatment by Koiter.
method of calculation insures that the estimate of the bifurcation pressure,
although approximate, is an upper bound to the actual bifurcation pressure.

The results of this calculation are shown in Figure 5 where the upper bound
results can be compared with the general theory predictions for the same
imperfection, Equation (25). The agreement, as in the case for the cylindrical
shell, is surprisingly good even for imperfections which reduce the buckling
load to as little as thirty percent of the classical value. For small

imperfections the upper bound estimate and the general theory prediction

approach each other asymptotically.

APPLICATION TO SPHERICAL CAPS

The conclusions reached with regard to the effects of imperfections on
shallow sections of complete spherical shells obviously apply to spherical caps
if the buckling wave lengths are small compared to the base dimension of the

cap. The shortest buckle wave length is

)

/Rh

To obtain a rough estimate of range in which the results of the present analysis

27(12 (1-v2))

should be at least partially applicable,we will demand, quite arbitrarily, that
the above wave length be less than one third the base diameter of the cap. With
this constraint it is easily shown that the shell rise H to the thickness h

must satisfy

e

E > 3(3(1-v2))

In terms of the frequently defined shallowness parameter A = 2(3(1-v2))l,4 YH/h
this implies that A > 3x% .,

It is interesting to note that Huang(lo) has calculated the buckling
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pres;ure for initially perfect spherical caps which are clamped on the base
edge. For sufficiently large rise to height, A > 3n say, the buckling pressure
is about eighty-five percent of the pressure necessary to buckle a complete
perfect sphere with the same radius of curvature and thickness. Experimental
data in this range shows comslderable scatter with buckiing pressures in many
instances less than thirty percent of the value predicted for the perfect cap.
It seems clear that initial imperfections account for the discrepancy between

the experimental data and the results for the initially perfect cap.

APPENDIX: UPPER BOUND CALCULATION

We consider a shallow spherical section with an imperfection in the form
w=Zthcos q = (A-1)
o R

The nonlinear shallow shell equations for an initially imperfect spherical
shell admit a relatively simple, exact prebuckling solution for an

imperfection of the form (A—l).f This solution is

{ 2m2s T s 2 2
W= {~(1-v)pR“/Eh2+ th i- p,pc cos q_ o + w (A-2)
p/p
1 -y = c
F={- z(xZ.,.yz)pR - EhRq°2 th I:—I;,;; cos q %} + f (A-3)

where w and f are zero prior to buckling. Buckling occurs with bifurcation

from this y-independent prebuckling solution. Thus we look for the value of

the pressure p at which the nonlinear shallow shell equations admit nonzero
For a y-independent initial imperfection the shallow shell equations are
altered by appending the term -F __w «x to the left hand side of

2YY

Equation (2) and +W ny o O the left hand side of Equation (3).
»
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soluiions for w and £ . Substituting {(A-2) and {A-3) into the full non-
lipnear equations for an initially imperfect spherical shell and then
linearizing with respect to w and f , we obtain two homogeneous, nonconstant-
coefficient equations in w and f for determining the eigenvalue p* . In
the interests of brevity these equations will not be listed here. The
approximate method of solution of this eigenvalue problem, only described below,
is the subject of a paper by Koiter(z) for the analogous problem of a cylinder
with axisymmetric imperfections.

One of the two linear eigenvalue equations 18 a compatibility equation

which is solved exactly for f 1in terms of an assumed w
W= sin(l-q 2‘--)sitx(yq I
2 oR o R
wvhere Yy 18 a free parameter. Then, f and w are used in conjunction with

the Raleigh-Ritz method to solve the second equation, an equilibrium equation,

approximately and to obtain an equation for the eigenvalue. The eigenvalue

equation relating p* and £ 1is
* 2,2 % 2z * *
(1-p /p)°(Q*+1-2Qp /p ) ~ C¥“£(Q1-p /p ) (p /p +2/Q)

+ (CY2E)2(Q-2+(9/4+y2)"2) = 0 (a-4)
where Q = 1/4 + y2 .

This approximate method of solution insures that the estimate of the
buckling pressure p* for a given imperfection £ 1s an upper bound to the
exact bifurcation pressure. In calculating p* for a given value of E the
free parameter Yy 41s chosen so that the prediction of p*, based on (A-4)
is a minimum. The results of these calculations are plotted in Figure 5 where

they can be compared with the predictions of the general theory.
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FIG.1 SHALLOW SECTION OF COMPLETE SPHERE
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